结构特点
压力式喷雾干燥主要是由压力式雾化器的工作原理所决定的,使这一干燥系统有自己的特点。由于压力式喷雾干燥所得产品是微粒状,不论是雾滴还是产品的粒径都比其他二种型式大,造成了雾滴干燥时间比较长。另外,喷出的雾化角也较小,一般在20°~70°之间,所以干燥器的外形也以高塔形为主,这样才能使雾滴有足够的停留时间。给料液施加一定的压力,通过雾化器雾化,所以系统中要有高压泵。另外,因雾化器孔径很小,为防杂物堵塞雾化器孔道,一定要在料液进入高压泵前进行过滤。采用压力式喷雾干燥,多以获得颗粒状产品为目的。
[1] 雾化特点
压力式喷嘴的液滴形成和分裂机理也是三种(滴状、丝状、膜状)。但是,工业生产所用的压力式喷嘴,通常是在膜状(空心锥形)分裂条件下操作的。压力式喷嘴所形成的液膜厚度范围大致是0.5~4μm。在工业用的喷雾造粒器中,喷嘴操作时的液膜长度很难直接看到。因为在雾化时,高的喷射速度和由于低黏度液体而引起的湍流,产生的液膜很短。增加黏度时,液膜变长;增加表面张力时,液膜变短。压力喷嘴的内部结构,要能使液体在形成锥形薄膜的过程中,用最小的外界扰动就可以使其分裂。
[2] 液体在高压泵的压力下从雾化器的切向通道高速进入旋转室,使液体在旋转室内产生高速运动。根据旋转动量矩守恒定律,旋转速度与旋转室的半径成反比,因此越靠近轴心处旋转速度愈大,静压力愈小。当旋转速度达到某一值时,雾化器中心处的压力等于大气压力,喷出的液体就形成了绕空气心旋转的侧锥形环状液膜。随着液膜的延长,空气的剧烈扰动所形成的波不断发展,液膜分裂成细线。加上湍流径向分速度和周围空气相对速度的影响,导致液膜破裂成丝,液丝断裂后受表面张力的作用,最后形成由无数雾滴组成的雾群。
[3]